|
|||||||||
PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES |
Class Summary | |
---|---|
advancedParameters | Defines the list of classes that can be selected by an instance of UIMain. |
ApplyAnnotator | Apply a serialized annotator. |
CommandLineUtil | Minorthird-specific utilities for command line based interface routines. |
CommandLineUtil.AnnotatorOutputParams | |
CommandLineUtil.BaseParams | Basic parameters used by almost everything. |
CommandLineUtil.ClassificationSignalParams | Parameters encoding the 'training signal' for classification learning. |
CommandLineUtil.EditParams | Parameters used by all 'train' routines. |
CommandLineUtil.ExtractionSignalParams | Parameters encoding the 'training signal' for extraction learning. |
CommandLineUtil.GUIParams | Basic parameters used by everything with a gui. |
CommandLineUtil.LoadAnnotatorParams | Parameters for testing a stored classifier. |
CommandLineUtil.MixupParams | |
CommandLineUtil.MultiClassificationSignalParams | Parameters encoding the 'training signal' for extraction learning. |
CommandLineUtil.OnlineBaseParams | Basic parameters used by almost everything. |
CommandLineUtil.OnlineLearnerParams | Parameters for Adding Examples to a Online Classifier |
CommandLineUtil.OnlineSignalParams | Parameters encoding the 'training signal' for extraction learning. |
CommandLineUtil.SaveParams | Parameters used by all 'train' routines. |
CommandLineUtil.SplitterParams | Parameters for doing train/test evaluation of a classifier. |
CommandLineUtil.TaggerSignalParams | Parameters encoding the 'training signal' for learning a token-tagger. |
CommandLineUtil.TestClassifierParams | Parameters for testing a stored classifier. |
CommandLineUtil.TestExtractorParams | Parameters for testing a stored classifier. |
CommandLineUtil.TrainClassifierParams | Parameters for training a classifier. |
CommandLineUtil.TrainExtractorParams | Parameters for training an extractor. |
CommandLineUtil.TrainTaggerParams | Parameters for training an extractor. |
CommandLineUtil.ViewLabelsParams | |
DebugMixup | Run a mixup program. |
EditLabels | Hand-label some documents. |
FileChooserViewer | A panel with a text area and a browse button |
Help | Help for the command-line interface. |
OnlineLearner | Start an Online Learner |
PreprocessTextForClassifier | Preprocess text data for classification. |
PreprocessTextForExtractor | Preprocess extraction text data for sequential learning methods. |
Recommended | In Minorthird it is possible to build up constructs like learners, feature extractors, and so on compositionally, out of simpler pieces. |
Recommended.BoostedDecisionTreeLearner | Uses AdaBoost to boosts the default decision tree learner 10 times. |
Recommended.BoostedStumpLearner | Uses AdaBoost to boosts a two-level decision tree learner 100 times. |
Recommended.CascadingBinaryLearner | |
Recommended.CRFAnnotatorLearner | Implements the CRF algorithm. |
Recommended.DecisionTreeLearner | A simple decision tree learner. |
Recommended.DocumentFE | A simple bag-of-words feature extractor. |
Recommended.HMMAnnotatorLearner | a hidden Markov model (HMM), by zkou |
Recommended.HMMTokenFE | |
Recommended.KnnLearner | K-NN learner following Yang and Chute. |
Recommended.MaxEntLearner | A maximum entropy learner. |
Recommended.MEMMLearner | Uses logistic regression/Maximum entropy to learn a condition Markov model (CMM), aka "maxent Markov model" (MEMM). |
Recommended.MostFrequentFirstLearner | |
Recommended.MultitokenSpanFE | An extraction-oriented feature extractor to apply to multi-token spans. |
Recommended.NaiveBayes | Multinomial Naive Bayes, as in McCallum's Rainbow package. |
Recommended.OneVsAllLearner | |
Recommended.SemiCRFAnnotatorLearner | Learns a semi-Markovian extension of CRFs. |
Recommended.SVMCMMLearner | Uses probabilistic SVM to learn a condition Markov model (CMM). |
Recommended.SVMLearner | A simple SVM learner with a linear kernel. |
Recommended.TokenFE | An extraction-oriented feature extractor, which should be applied to one-token spans. |
Recommended.TokenPropUsingFE | A simple bag-of-words feature extractor, with words being put in lower case. |
Recommended.TweakedLearner | A Tweaked Learner, with an optimization of the precision vs. |
Recommended.VotedPerceptronLearner | Voted perceptron learning following Freund & Schapire. |
Recommended.VPCMMLearner | Uses the voted perceptron algorithm to learn a "conditional Markov model" (CMM). |
Recommended.VPHMMLearner | Uses the voted perceptron algorithm to learn a parameters of a hidden Markov model (HMM). |
Recommended.VPSMMLearner | Uses the voted perceptron algorithm to learn the parameters for a hidden semi-Markov model (SMM). |
Recommended.VPSMMLearner2 | Uses the voted perceptron algorithm to learn the parameters for a hidden semi-Markov model (SMM). |
Recommended.VPTagLearner | |
RunMixup | Run a mixup program. |
SimpleClassifierUI | A simple UI for training and testing classifiers |
TestClassifier | Test an existing text classifier. |
TestExtractor | Do a train/test experiment for named-entity extractors. |
TestMultiClassifier | Test an existing text classifier for multiple labels. |
TrainClassifier | Train a text classifier. |
TrainExtractor | Train a named-entity extractor. |
TrainMultiClassifier | Train a text classifier. |
TrainTestClassifier | Do a train/test experiment on a text classifier. |
TrainTestExtractor | Do a train/test experiment for named-entity extractors. |
TrainTestMultiClassifier | Do a train/test experiment on a text classifier for data with multiple labels. |
TrainTestTagger | Do a train/test experiment for word taggers. |
UIMain | Main UI program. |
ViewLabels | Interactively view TextLabels. |
|
|||||||||
PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES |