Class Summary |
advancedParameters |
Defines the list of classes that can be selected by an instance of UIMain. |
ApplyAnnotator |
Apply a serialized annotator. |
CommandLineUtil |
Minorthird-specific utilities for command line based interface routines. |
CommandLineUtil.AnnotatorOutputParams |
|
CommandLineUtil.BaseParams |
Basic parameters used by almost everything. |
CommandLineUtil.ClassificationSignalParams |
Parameters encoding the 'training signal' for classification learning. |
CommandLineUtil.EditParams |
Parameters used by all 'train' routines. |
CommandLineUtil.ExtractionSignalParams |
Parameters encoding the 'training signal' for extraction learning. |
CommandLineUtil.GUIParams |
Basic parameters used by everything with a gui. |
CommandLineUtil.LoadAnnotatorParams |
Parameters for testing a stored classifier. |
CommandLineUtil.MixupParams |
|
CommandLineUtil.MultiClassificationSignalParams |
Parameters encoding the 'training signal' for extraction learning. |
CommandLineUtil.OnlineBaseParams |
Basic parameters used by almost everything. |
CommandLineUtil.OnlineLearnerParams |
Parameters for Adding Examples to a Online Classifier |
CommandLineUtil.OnlineSignalParams |
Parameters encoding the 'training signal' for extraction learning. |
CommandLineUtil.SaveParams |
Parameters used by all 'train' routines. |
CommandLineUtil.SplitterParams |
Parameters for doing train/test evaluation of a classifier. |
CommandLineUtil.TaggerSignalParams |
Parameters encoding the 'training signal' for learning a token-tagger. |
CommandLineUtil.TestClassifierParams |
Parameters for testing a stored classifier. |
CommandLineUtil.TestExtractorParams |
Parameters for testing a stored classifier. |
CommandLineUtil.TrainClassifierParams |
Parameters for training a classifier. |
CommandLineUtil.TrainExtractorParams |
Parameters for training an extractor. |
CommandLineUtil.TrainTaggerParams |
Parameters for training an extractor. |
CommandLineUtil.ViewLabelsParams |
|
DebugMixup |
Run a mixup program. |
EditLabels |
Hand-label some documents. |
FileChooserViewer |
A panel with a text area and a browse button |
Help |
Help for the command-line interface. |
OnlineLearner |
Start an Online Learner |
PreprocessTextForClassifier |
Preprocess text data for classification. |
PreprocessTextForExtractor |
Preprocess extraction text data for sequential learning methods. |
Recommended |
In Minorthird it is possible to build up constructs like learners,
feature extractors, and so on compositionally, out of simpler
pieces. |
Recommended.BoostedDecisionTreeLearner |
Uses AdaBoost to boosts the default decision tree learner 10 times. |
Recommended.BoostedStumpLearner |
Uses AdaBoost to boosts a two-level decision tree learner 100
times. |
Recommended.CascadingBinaryLearner |
|
Recommended.CRFAnnotatorLearner |
Implements the CRF algorithm. |
Recommended.DecisionTreeLearner |
A simple decision tree learner. |
Recommended.DocumentFE |
A simple bag-of-words feature extractor. |
Recommended.HMMAnnotatorLearner |
a hidden Markov model (HMM), by zkou |
Recommended.HMMTokenFE |
|
Recommended.KnnLearner |
K-NN learner following Yang and Chute. |
Recommended.MaxEntLearner |
A maximum entropy learner. |
Recommended.MEMMLearner |
Uses logistic regression/Maximum entropy to learn a condition
Markov model (CMM), aka "maxent Markov model" (MEMM). |
Recommended.MostFrequentFirstLearner |
|
Recommended.MultitokenSpanFE |
An extraction-oriented feature extractor to apply to multi-token
spans. |
Recommended.NaiveBayes |
Multinomial Naive Bayes, as in McCallum's Rainbow package. |
Recommended.OneVsAllLearner |
|
Recommended.SemiCRFAnnotatorLearner |
Learns a semi-Markovian extension of CRFs. |
Recommended.SVMCMMLearner |
Uses probabilistic SVM to learn a condition Markov model (CMM). |
Recommended.SVMLearner |
A simple SVM learner with a linear kernel. |
Recommended.TokenFE |
An extraction-oriented feature extractor, which should be
applied to one-token spans. |
Recommended.TokenPropUsingFE |
A simple bag-of-words feature extractor, with words being put in
lower case. |
Recommended.TweakedLearner |
A Tweaked Learner, with an optimization of the precision vs. |
Recommended.VotedPerceptronLearner |
Voted perceptron learning following Freund & Schapire. |
Recommended.VPCMMLearner |
Uses the voted perceptron algorithm to learn a "conditional
Markov model" (CMM). |
Recommended.VPHMMLearner |
Uses the voted perceptron algorithm to learn a parameters of a
hidden Markov model (HMM). |
Recommended.VPSMMLearner |
Uses the voted perceptron algorithm to learn the parameters for a
hidden semi-Markov model (SMM). |
Recommended.VPSMMLearner2 |
Uses the voted perceptron algorithm to learn the parameters for a
hidden semi-Markov model (SMM). |
Recommended.VPTagLearner |
|
RunMixup |
Run a mixup program. |
SimpleClassifierUI |
A simple UI for training and testing classifiers |
TestClassifier |
Test an existing text classifier. |
TestExtractor |
Do a train/test experiment for named-entity extractors. |
TestMultiClassifier |
Test an existing text classifier for multiple labels. |
TrainClassifier |
Train a text classifier. |
TrainExtractor |
Train a named-entity extractor. |
TrainMultiClassifier |
Train a text classifier. |
TrainTestClassifier |
Do a train/test experiment on a text classifier. |
TrainTestExtractor |
Do a train/test experiment for named-entity extractors. |
TrainTestMultiClassifier |
Do a train/test experiment on a text classifier for data with multiple labels. |
TrainTestTagger |
Do a train/test experiment for word taggers. |
UIMain |
Main UI program. |
ViewLabels |
Interactively view TextLabels. |