Package edu.cmu.minorthird.ui

Class Summary
advancedParameters Defines the list of classes that can be selected by an instance of UIMain.
ApplyAnnotator Apply a serialized annotator.
CommandLineUtil Minorthird-specific utilities for command line based interface routines.
CommandLineUtil.AnnotatorOutputParams  
CommandLineUtil.BaseParams Basic parameters used by almost everything.
CommandLineUtil.ClassificationSignalParams Parameters encoding the 'training signal' for classification learning.
CommandLineUtil.EditParams Parameters used by all 'train' routines.
CommandLineUtil.ExtractionSignalParams Parameters encoding the 'training signal' for extraction learning.
CommandLineUtil.GUIParams Basic parameters used by everything with a gui.
CommandLineUtil.LoadAnnotatorParams Parameters for testing a stored classifier.
CommandLineUtil.MixupParams  
CommandLineUtil.MultiClassificationSignalParams Parameters encoding the 'training signal' for extraction learning.
CommandLineUtil.OnlineBaseParams Basic parameters used by almost everything.
CommandLineUtil.OnlineLearnerParams Parameters for Adding Examples to a Online Classifier
CommandLineUtil.OnlineSignalParams Parameters encoding the 'training signal' for extraction learning.
CommandLineUtil.SaveParams Parameters used by all 'train' routines.
CommandLineUtil.SplitterParams Parameters for doing train/test evaluation of a classifier.
CommandLineUtil.TaggerSignalParams Parameters encoding the 'training signal' for learning a token-tagger.
CommandLineUtil.TestClassifierParams Parameters for testing a stored classifier.
CommandLineUtil.TestExtractorParams Parameters for testing a stored classifier.
CommandLineUtil.TrainClassifierParams Parameters for training a classifier.
CommandLineUtil.TrainExtractorParams Parameters for training an extractor.
CommandLineUtil.TrainTaggerParams Parameters for training an extractor.
CommandLineUtil.ViewLabelsParams  
DebugMixup Run a mixup program.
EditLabels Hand-label some documents.
FileChooserViewer A panel with a text area and a browse button
Help Help for the command-line interface.
OnlineLearner Start an Online Learner
PreprocessTextForClassifier Preprocess text data for classification.
PreprocessTextForExtractor Preprocess extraction text data for sequential learning methods.
Recommended In Minorthird it is possible to build up constructs like learners, feature extractors, and so on compositionally, out of simpler pieces.
Recommended.BoostedDecisionTreeLearner Uses AdaBoost to boosts the default decision tree learner 10 times.
Recommended.BoostedStumpLearner Uses AdaBoost to boosts a two-level decision tree learner 100 times.
Recommended.CascadingBinaryLearner  
Recommended.CRFAnnotatorLearner Implements the CRF algorithm.
Recommended.DecisionTreeLearner A simple decision tree learner.
Recommended.DocumentFE A simple bag-of-words feature extractor.
Recommended.HMMAnnotatorLearner a hidden Markov model (HMM), by zkou
Recommended.HMMTokenFE  
Recommended.KnnLearner K-NN learner following Yang and Chute.
Recommended.MaxEntLearner A maximum entropy learner.
Recommended.MEMMLearner Uses logistic regression/Maximum entropy to learn a condition Markov model (CMM), aka "maxent Markov model" (MEMM).
Recommended.MostFrequentFirstLearner  
Recommended.MultitokenSpanFE An extraction-oriented feature extractor to apply to multi-token spans.
Recommended.NaiveBayes Multinomial Naive Bayes, as in McCallum's Rainbow package.
Recommended.OneVsAllLearner  
Recommended.SemiCRFAnnotatorLearner Learns a semi-Markovian extension of CRFs.
Recommended.SVMCMMLearner Uses probabilistic SVM to learn a condition Markov model (CMM).
Recommended.SVMLearner A simple SVM learner with a linear kernel.
Recommended.TokenFE An extraction-oriented feature extractor, which should be applied to one-token spans.
Recommended.TokenPropUsingFE A simple bag-of-words feature extractor, with words being put in lower case.
Recommended.TweakedLearner A Tweaked Learner, with an optimization of the precision vs.
Recommended.VotedPerceptronLearner Voted perceptron learning following Freund & Schapire.
Recommended.VPCMMLearner Uses the voted perceptron algorithm to learn a "conditional Markov model" (CMM).
Recommended.VPHMMLearner Uses the voted perceptron algorithm to learn a parameters of a hidden Markov model (HMM).
Recommended.VPSMMLearner Uses the voted perceptron algorithm to learn the parameters for a hidden semi-Markov model (SMM).
Recommended.VPSMMLearner2 Uses the voted perceptron algorithm to learn the parameters for a hidden semi-Markov model (SMM).
Recommended.VPTagLearner  
RunMixup Run a mixup program.
SimpleClassifierUI A simple UI for training and testing classifiers
TestClassifier Test an existing text classifier.
TestExtractor Do a train/test experiment for named-entity extractors.
TestMultiClassifier Test an existing text classifier for multiple labels.
TrainClassifier Train a text classifier.
TrainExtractor Train a named-entity extractor.
TrainMultiClassifier Train a text classifier.
TrainTestClassifier Do a train/test experiment on a text classifier.
TrainTestExtractor Do a train/test experiment for named-entity extractors.
TrainTestMultiClassifier Do a train/test experiment on a text classifier for data with multiple labels.
TrainTestTagger Do a train/test experiment for word taggers.
UIMain Main UI program.
ViewLabels Interactively view TextLabels.