edu.cmu.minorthird.classify.relational
Class StackedGraphicalLearner

java.lang.Object
  extended by edu.cmu.minorthird.classify.relational.StackedBatchClassifierLearner
      extended by edu.cmu.minorthird.classify.relational.StackedGraphicalLearner
All Implemented Interfaces:
ClassifierLearner, java.lang.Cloneable

public class StackedGraphicalLearner
extends StackedBatchClassifierLearner

Stacked Graphical Learning based on a BatchClassifier learner

Author:
Zhenzhen Kou

Nested Class Summary
 class StackedGraphicalLearner.StackedGraphicalClassifier
           
static class StackedGraphicalLearner.StackingParams
          Bundle of parameters for the StackedGraphicalLearner.
 
Field Summary
 
Fields inherited from class edu.cmu.minorthird.classify.relational.StackedBatchClassifierLearner
classifier, dataset
 
Constructor Summary
StackedGraphicalLearner()
           
StackedGraphicalLearner(BatchClassifierLearner baseLearner)
           
StackedGraphicalLearner(BatchClassifierLearner baseLearner, int depth)
           
StackedGraphicalLearner(int depth)
           
 
Method Summary
 Classifier batchTrain(RealRelationalDataset dataset)
          subclasses should use this method to implement a batch supervised learning algorithm.
 StackedGraphicalLearner.StackingParams getParams()
           
 ExampleSchema getSchema()
          Returns the ExampleSchema - constraints on what the Examples will be.
 void setSchema(ExampleSchema schema)
          Accept an ExampleSchema - constraints on what the Examples will be.
 RealRelationalDataset stackDataset(RealRelationalDataset dataset)
          Create a new dataset in which each instance has been augmented with the features constructed from the *predicted* labels of neighbor examples, where the prediction is made using cross-validation.
 
Methods inherited from class edu.cmu.minorthird.classify.relational.StackedBatchClassifierLearner
addExample, completeTraining, copy, getClassifier, hasNextQuery, nextQuery, reset, setInstancePool
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

StackedGraphicalLearner

public StackedGraphicalLearner()

StackedGraphicalLearner

public StackedGraphicalLearner(BatchClassifierLearner baseLearner)

StackedGraphicalLearner

public StackedGraphicalLearner(BatchClassifierLearner baseLearner,
                               int depth)

StackedGraphicalLearner

public StackedGraphicalLearner(int depth)
Method Detail

getParams

public StackedGraphicalLearner.StackingParams getParams()

setSchema

public final void setSchema(ExampleSchema schema)
Description copied from interface: ClassifierLearner
Accept an ExampleSchema - constraints on what the Examples will be.


getSchema

public final ExampleSchema getSchema()
Description copied from interface: ClassifierLearner
Returns the ExampleSchema - constraints on what the Examples will be.


batchTrain

public Classifier batchTrain(RealRelationalDataset dataset)
Description copied from class: StackedBatchClassifierLearner
subclasses should use this method to implement a batch supervised learning algorithm.

Specified by:
batchTrain in class StackedBatchClassifierLearner

stackDataset

public RealRelationalDataset stackDataset(RealRelationalDataset dataset)
Create a new dataset in which each instance has been augmented with the features constructed from the *predicted* labels of neighbor examples, where the prediction is made using cross-validation.