edu.cmu.minorthird.classify.ranking
Class ListNet
java.lang.Object
edu.cmu.minorthird.classify.BatchClassifierLearner
edu.cmu.minorthird.classify.BatchBinaryClassifierLearner
edu.cmu.minorthird.classify.ranking.BatchRankingLearner
edu.cmu.minorthird.classify.ranking.ListNet
- All Implemented Interfaces:
- BinaryClassifierLearner, ClassifierLearner, java.lang.Cloneable
public class ListNet
- extends BatchRankingLearner
Implements the Listwise Ranking algorithm proposed at:
Learning to Rank: From Pairwise Approach to Listwise Approach, ICML 2007.
Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, Hang Li.
Only works for binary relevance levels (i.e., revelant vs non-revevant)
- Author:
- Vitor R. Carvalho
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
ListNet
public ListNet()
ListNet
public ListNet(int numEpochs)
ListNet
public ListNet(int epochs,
double rate)
setDevData
public void setDevData(Dataset data)
batchTrain
public Classifier batchTrain(Dataset data)
- Description copied from class:
BatchClassifierLearner
- subclasses should use this method to implement a batch supervised learning algorithm.
- Specified by:
batchTrain
in class BatchClassifierLearner
crossEntropy
public double crossEntropy(double[] base,
double[] b)
- Calculates Equation (3): cross entropy between a "base" distribution and another one.
setLearnRate
public void setLearnRate()