Package edu.cmu.minorthird.classify

Interface Summary
BinaryClassifierLearner Learn a BinaryClassifier.
Classifier Interface for a classifier.
ClassifierLearner Learn an Classifier.
Dataset A set of examples for learning.
Dataset.Split A partitioning of the dataset into a number of train/test partitions
FeatureIndex  
HasSubpopulationId Marker interface for objects which support the 'getSubpopulationId' method.
Instance A single instance for a learner.
Splitter<T> Split iterators into train/test partitions.
 

Class Summary
AbstractInstance Common code for all instance implementations
BasicDataset A set of examples for learning.
BasicDataset.SimpleDatasetViewer  
BasicFeatureIndex  
BatchBinaryClassifierLearner Simple abstract class, getBinaryClassifier() method for a BinaryClassifierLearner, and also a batchTrainBinary() method.
BatchClassifierLearner Abstract ClassifierLearner which instantiates the teacher-learner protocol so as to implement a standard batch learner.
BatchVersion Batch version of an OnlineClassifierLearner.
BinaryBatchVersion Batch version of an OnlineBinaryClassifierLearner
BinaryClassifier A Classifier which associates instances with a real number.
CascadingBinaryLearner Multi-class version of a binary classifier.
ClassifierLearnerFactory Generate many copies of a ClassifierLearner.
ClassifierTeacher Implements the teacher's side of the learner-teacher protocol.
ClassifyCommandLineUtil Main UI program for the 'classify' package.
ClassifyCommandLineUtil.BaseParams Parameters used for all experiments
ClassifyCommandLineUtil.Learner Generalized class for Leaner...
ClassifyCommandLineUtil.Learner.ClassifierLearner  
ClassifyCommandLineUtil.Learner.SequentialLearner  
ClassifyCommandLineUtil.MultiTestParams  
ClassifyCommandLineUtil.MultiTrainParams Paramaters for training with a simple dataset
ClassifyCommandLineUtil.MultiTrainTestParams Specific TrainTestParameters for Multi mode.
ClassifyCommandLineUtil.SeqTestParams  
ClassifyCommandLineUtil.SeqTrainParams Paramaters for training with a simple dataset
ClassifyCommandLineUtil.SeqTrainTestParams Specific TrainTestParameters for Sequential mode.
ClassifyCommandLineUtil.SimpleTestParams  
ClassifyCommandLineUtil.SimpleTrainParams Paramaters for training with a simple dataset
ClassifyCommandLineUtil.SimpleTrainTestParams Specific TrainTestParameters for Simple/Standard mode.
ClassifyCommandLineUtil.TestParams Paramters for Test Classifier
ClassifyCommandLineUtil.TrainParams Parameters for training.
ClassifyCommandLineUtil.TrainTestParams Paramters for TrainTest Classifier.
ClassLabel A label which is associated with an instance---either by a classifier, or in training data.
DatasetClassifierTeacher Trains a ClassifierLearner using the information in a labeled Dataset.
DatasetIndex An inverted index, mapping features to examples which contain the features.
DatasetLoader Dataset i/o.
Example An instance that is associated with a ClassLabel.
ExampleSchema Defines legal formats for examples.
Explanation Provides a facitlity for constructing and displaying explanations for classification.
Explanation.Node A Node in the Explanation Tree
Feature A name for a feature.
FeatureFactory Creates Features, and maintains a mapping between Features and numeric ids.
GUI Support routines for building GUI's to view datasets, instances, and etc.
GUI.ExampleViewer A viewer for examples.
GUI.InstanceViewer A viewer for instances
ManyVsRestLearner Multi-class version of a binary classifier; Generalizes OneVsAllLearner.
MistakeCountingOnlineLearner A wrapper around on OnlineClassifierLearner that counts the number of mistakes if makes.
MostFrequentFirstLearner Multi-class version of a binary classifier.
MutableInstance A single instance for a learner.
OneVsAllClassifier A Classifier composed of a bunch of binary classifiers, each of which separates one class from the others.
OneVsAllLearner Multi-class version of a binary classifier.
OnlineBinaryClassifierLearner Abstract class which implements the 'getBinaryClassifier' method of BinaryClassifierLearner's.
OnlineClassifierLearner Abstract ClassifierLearner which instantiates the teacher-learner protocol so as to implement a standard on-line learner.
OnlineVersion Online version of a BatchClassifierLearner.
RandomAccessDataset A dataset which supports random access to the examples.
SampleDatasets Some sample inputs for learners.
SGMExample An instance designed for a relational dataset.
SGMFeatureFactory For Stacked Graphical Learning.
StackedClassifierTeacher Implements the teacher's side of the learner-teacher protocol for SGM.
StackedDatasetClassifierTeacher Trains a StackedClassifierLearner using the information in a labeled relational Dataset.
StackedLearner Stacked generalization.
Test Main UI program for the 'classify' package.
Test.DataClassificationTask  
Train Main UI program for the 'classify' package.
Train.DataClassificationTask  
TrainTest Main UI program for the 'classify' package.
TrainTest.DataClassificationTask  
TweakedLearner A Tweaked Learner, with an optimization of the precision vs.
TweakedLearner.TweakedClassifier A Tweaked Classifier, with an optimization of the precision vs.
UI Main UI program for the 'classify' package.
UI.DataClassificationTask  
Util  
WeightedSet<T> Set of objects, each with an associated weight
 

Exception Summary
OneVsAllLearner.IllegalArgumentException