edu.cmu.minorthird.classify.algorithms.trees
Class RandomTreeLearner
java.lang.Object
edu.cmu.minorthird.classify.BatchClassifierLearner
edu.cmu.minorthird.classify.BatchBinaryClassifierLearner
edu.cmu.minorthird.classify.algorithms.trees.RandomTreeLearner
- All Implemented Interfaces:
- BinaryClassifierLearner, ClassifierLearner, java.lang.Cloneable
- Direct Known Subclasses:
- FastRandomTreeLearner
public class RandomTreeLearner
- extends BatchBinaryClassifierLearner
Implement a random decision tree to be used in the random forest learner.
Implements two tree splitters. Default one splits on random features. BestOfN
splits on the b best of N randomly chosen features.
- Author:
- Alexander Friedman
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
RandomTreeLearner
public RandomTreeLearner()
RandomTreeLearner
public RandomTreeLearner(RandomTreeLearner.TreeSplitter b)
batchTrain
public Classifier batchTrain(java.util.List<Example> dataset,
java.util.Vector<Feature> allFeatures)
batchTrain
public Classifier batchTrain(Dataset dataset)
- Description copied from class:
BatchClassifierLearner
- subclasses should use this method to implement a batch supervised learning algorithm.
- Specified by:
batchTrain
in class BatchClassifierLearner
batchTrain
public edu.cmu.minorthird.classify.algorithms.trees.DecisionTree batchTrain(java.util.List<Example> dataset,
int depth,
java.util.Vector<Feature> unusedFeatures)