edu.cmu.minorthird.classify.algorithms.trees
Class AdaBoost
java.lang.Object
edu.cmu.minorthird.classify.BatchClassifierLearner
edu.cmu.minorthird.classify.BatchBinaryClassifierLearner
edu.cmu.minorthird.classify.algorithms.trees.AdaBoost
- All Implemented Interfaces:
- BinaryClassifierLearner, ClassifierLearner, java.lang.Cloneable
- Direct Known Subclasses:
- AdaBoost.L, Recommended.BoostedDecisionTreeLearner, Recommended.BoostedStumpLearner
public class AdaBoost
- extends BatchBinaryClassifierLearner
Generalized version of AdaBoost, as described in Robert E. Schapire
and Yoram Singer, Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297-336,
1999.
The base learner intended for this is the decision-tree learner
in this package.
- Author:
- William Cohen
Nested Class Summary |
static class |
AdaBoost.L
AdaBoost.L is a logistic-regression version of AdaBoost. |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
AdaBoost
public AdaBoost()
AdaBoost
public AdaBoost(BatchClassifierLearner baseLearner,
int maxRounds)
getMaxRounds
public int getMaxRounds()
setMaxRounds
public void setMaxRounds(int n)
getBaseLearner
public BatchClassifierLearner getBaseLearner()
setBaseLearner
public void setBaseLearner(BatchClassifierLearner learner)
batchTrain
public Classifier batchTrain(Dataset dataset)
- Description copied from class:
BatchClassifierLearner
- subclasses should use this method to implement a batch supervised learning algorithm.
- Specified by:
batchTrain
in class BatchClassifierLearner
discountFactor
protected double discountFactor(double y,
double yhat)